Foundations and Principles I

From WebScience

Jump to: navigation, search


Fact Box
Module
representative
Gerhard Hartmann
Credits 12
Term Term 1
Workload 300 h


News

Learning outcomes

Crucial to this module is that the participants, despite their own educational and professional background, develop a common basic vocabulary of the web science discipline.

The students know the relevant issues and perspectives of the discipline Web Science, own the capability to interrelate and to apply them to current domain problems and to produce solutions. They are able to appraise and discuss produced solutions critically.

They are familiar with the different architectural pattern of web-based systems, the interrelations of contributing modules, components and protocols. The students are able to analyze and discuss web applications from an architectural perspective. They perceive openness and decentralization as key properties of the web, understand the impact of fundamental principles of resources, interaction, and identification, understand the role of architecture and architectural patterns for the analysis and evolution of web applications, and are able to identify and discuss the role of information modeling in the web in contrast to more traditional data(base system) centric approaches.

Application classes like peer-to-peer applications, synchronously or asynchronously interacting applications and services can be distinguished and discussed based on their architectural patterns, protocols and typical uses. The students are able to identify the primary needs for the quality management of web-based systems. They know existing approaches, concepts and methods for (software) quality and quality management and are able to discuss their similarities and differences, know established techniques of quality planning, quality assurance, quality control, and quality optimization on organizational, project, and development phase scale and are able to judge them critically in terms of business, risk, and other kinds of objectives, and are able to derive appropriate requirements for quality management systems from high-level (e.g. business) objectives.

They know quality criteria of different disciplines (e.g. software-engineering, design, economy) and are able to incorporate them into Web Science projects. They show the ability to develop method-based solutions, to communicate these solutions through representations (such as abstract or concrete prototypes) and to critically discuss them.

The students know approaches and procedures for the elicitation of relevant data from web-based systems, are familiar with underlying foundations (such as statistics), learn to apply concepts and methods of web analytics to actual questions and show the ability to critically discuss interpretations and consequences for the conceptual design and the maintenance of web-based systems. This includes the ability to bear several domain perspectives (economy, ergonomics and so on).

The students enhance their abilities in terms of formal and abstract thinking, in terms of divergent and convergent thinking and their capability to design solutions based on a more holistic view. After attending the course, the students are able to recognize the connection between function and design, critically analyze it and develop target-oriented, integrated solutions in communication and design. They know the fundamentals of visual communication in use of color, shape, typography and pictures, are proficient in usage of basic design-related technical terms and have the ability to identify the best possible solution for a task from a variety of design-alternatives and to communicate the reasons for their decision comprehensible.

Examination

A written examination of 3 hours is offered at the concluding weekend of the semester. The examination consists of tasks contributed by the course representatives of the module.


All Courses of this module

required


optional


Currently not offered courses